Success Stories

September 3, 2009

An application to which SVFlux™ / SVHeat™ was recently applied involves calculation of the change in soil suctions near the ground surface in a woodland area. The issue at stake was whether long term climate change will affect the forestry industry in Canada. If there is a change in average annual air temperature, how will this affect the distribution of water contents and soil suctions in the upper root zone? The danger is that increased temperatures could lead to less moisture being available in the root zones. Less moisture could then potentially affect the growth of trees. The intent of this study was to use the SVFlux software and model detailed climatic flows near the ground surface both in the present day and into the future. The potential impact of climate change on forestry could then be determined.


Why SVFlux / SVHeat?

The SVFlux and SVHeat software packages were used for this particular and analysis because of their ease of use and their ability to handle both water and heat flow in a coupled or uncoupled fashion. 1D versions of each package are available which simplifies this type of analysis such that it can be run quickly and easily. Both software packages implement climatic coupling and therefore can compute the influence of detailed climatic data on the soil profile. Coupled analysis is important for this profile as the flow and thermal processes are highly dependent upon each other. This is particularly true in the wintertime months.


Climate data

Typical forest site profile

Climate data was pulled from Environment Canada weather stations which existed near the study site. An analysis period of 15 years was selected and matching data was obtained. The data collected involved measurements of precipitation, net radiation, windspeed, and air temperature.


Methodology

The methodology for this particular study utilized two different sites. One site consisted of a high water table and the other site consists of a low water table. The vegetation at each site and the resulting root depth were varied to reflect the changing vegetation. A typical profile analyzed may be seen in the diagram to the right.

In this particular modeling exercise, the lower boundary condition was assumed be constant. The variation in the numerical model was then entirely controlled by the upper climatic boundary condition. The SVFlux software makes use of the Fredlund-Wilson-Penman equation in order to calculate actual evaporation. Calculation of actual evaporation in these modeling situations is of paramount importance as it controls the results of the modeling. The Fredlund-Wilson-Penman equation then makes use of detailed climatic data in order to determine a net flux boundary condition on the upper surface of the model. Some of the precipitation data used in the numerical model can be seen in the figure below.

Forest precipitation data

A range of soil properties which were representative of this region were utilized in the numerical model.


Results and Discussion

The numerical model was successfully able to calculate the influence of climate change on the near surface water content, so suction, and freezing front. Cumulative plots of the flows of precipitation, evaporation, and net flux into the ground could be produced. In particular, and the impact of climate change on the moisture conditions and their relative impact on the root zones of the forest vegetation could be calculated. The study therefore provided valuable information to the forestry industry regarding reasonable expectations of the impact of climate change.

Flux results

If such an analysis is of interest to you please contact us directly.


Testimonials

  • "I would like to thank you for all the support and the interest that I got from your team regarding this matter. I was able to successfully finish my project with the help of your technical support and managed to graduate achieving a high grade on the project I did. The software is extremely helpful and wasn't complicated and I look forward to future for more work and experience with your software. Thank you for your help and support."
  • "I have been using SoilVision's SVOFFICE™ software for research and training purposes for a number of years now. Myself and my colleagues have developed a number of training modules in this software, and have been using these to teach limit equilibrium and flow modeling to undergraduate students in the civil, environmental and mining engineering streams.

    In my opinion, this software is easy to learn and fun to use. The built-in tutorials are sufficient to get one started. With these tutorials, my students were generally able to complete their analyses with minimal involvement on my side.

    Based on my own experience, it takes around a month of full-time use to become reasonably competent with the software (provided that one understands the theoretical underpinnings of this type of analysis) - a short learning curve, compared to other products of similar complexity. The interface is intuitive enough for me to figure out things on my own, and I rarely had the need to ask for help.

    I don't generally like praising anything excessively, and I don't post particularly glowing reviews for anything. Having said that, I must mention the SoilVision support. At some point during my research, I was conducting a number of replication studies for my thesis. In that period, I must have emailed SoilVision's support anywhere from 2 to 5 times a day, with fairly complex (and sometimes very dumb) questions. I always got a response by the end of the day, and a resolution within a couple days at most. In a number of urgent cases (such as during a tutorial session with a classroom of students) I called them directly on the phone and, with senior product engineers involved, had the issue addressed in minutes."
  • "We have allowed our students the choice of using multiple Geotechnical software suites in our Dam Design and other Geotechnical courses. Our students consistently gravitate towards SoilVision software as being the most modern and user-friendly."

  • "I've been a geotechnical engineer for more than 25 years and SoilVision has the best tech support I have ever worked with. I truly appreciate their patience and help over the past year."

  • "Peter Brett Associates have been looking to update our existing slope stability software over the last year. After extensive research and trials, SVSLOPE® developed by SoilVision Systems Ltd. was found to meet all our existing and future design requirements. Its ease of use for modeling simple as well as complex geological and geometrical problems was a critical factor in our assessment as well as the incorporation of design to the Eurocodes. Their customer support has been faultless and their willingness to develop the software to meet our own specific design requirements is a most gratifying added bonus."

    "We love the fact that SVSLOPE® is part of an integrated suite of software and that, if required, 3D analysis can be undertaken. We would recommend this product to other geotechnical consulting firms."

  • "We have been using SVSLOPE® and SVFLUX™ for the past year and have found them to be efficient and productive engineering tools which have allowed us to offer our services in an efficient manner. The capability of automated increased discretization of the mesh is an absolute benefit to our modeling, reducing time and effort. We have found the software quick and easy for our engineers to train and utilize. I would recommend this product to other geotechnical consulting firms."

  • "The software is well documented and comes with number of useful example models. We were able to quickly begin creating models after a short review of the user interface and going through the available on-line webinars. The software offers solid benefits of less conservatism and the ability to model real geometry."

  • "This new software for stability analysis includes a number of state-of-the-art options for probabilistic slope stability analysis. This feature, combined with comprehensive deterministic analyses, will provide new opportunities to build confidence in the results of a site-specific analysis.”

  • "I'm excited to see the release of this new and innovative product. I look forward to and encourage the application of this software on additional geotechnical projects.”

  • "In consulting engineering practice, I am increasingly made aware of the important and beneficial role that modeling the unsaturated soil zone can play in providing the client with the best possible engineered solution. The SoilVision software has made it possible to readily estimate and incorporate unsaturated soil properties into the modeling of saturated / unsaturated soil systems.”

  • "The use of SVSLOPE® software as part of a research project on clay slopes under seismic conditions with the Université de Sherbrooke has been incredibly easy and effective. The continuation of this research with SoilVision is promising, with technical support, which was present at the right time, as well as a passionate geotechnical team supporting the project.”

Our industry defining software will change the game for your firm